Extensions 1→N→G→Q→1 with N=C22 and Q=D5xDic3

Direct product G=NxQ with N=C22 and Q=D5xDic3
dρLabelID
C22xD5xDic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C22 and Q=D5xDic3
extensionφ:Q→Aut NdρLabelID
C22:(D5xDic3) = D5xA4:C4φ: D5xDic3/D10S3 ⊆ Aut C22606C2^2:(D5xDic3)480,979
C22:2(D5xDic3) = Dic3xC5:D4φ: D5xDic3/C5xDic3C2 ⊆ Aut C22240C2^2:2(D5xDic3)480,629
C22:3(D5xDic3) = Dic15:16D4φ: D5xDic3/Dic15C2 ⊆ Aut C22240C2^2:3(D5xDic3)480,635
C22:4(D5xDic3) = D5xC6.D4φ: D5xDic3/C6xD5C2 ⊆ Aut C22120C2^2:4(D5xDic3)480,623

Non-split extensions G=N.Q with N=C22 and Q=D5xDic3
extensionφ:Q→Aut NdρLabelID
C22.1(D5xDic3) = D20.3Dic3φ: D5xDic3/C5xDic3C2 ⊆ Aut C222404C2^2.1(D5xDic3)480,359
C22.2(D5xDic3) = D20.2Dic3φ: D5xDic3/Dic15C2 ⊆ Aut C222404C2^2.2(D5xDic3)480,360
C22.3(D5xDic3) = C60.28D4φ: D5xDic3/C6xD5C2 ⊆ Aut C221204C2^2.3(D5xDic3)480,34
C22.4(D5xDic3) = C12.6D20φ: D5xDic3/C6xD5C2 ⊆ Aut C222404C2^2.4(D5xDic3)480,37
C22.5(D5xDic3) = (C2xC6).D20φ: D5xDic3/C6xD5C2 ⊆ Aut C221204C2^2.5(D5xDic3)480,71
C22.6(D5xDic3) = D5xC4.Dic3φ: D5xDic3/C6xD5C2 ⊆ Aut C221204C2^2.6(D5xDic3)480,358
C22.7(D5xDic3) = (C6xDic5):7C4φ: D5xDic3/C6xD5C2 ⊆ Aut C22240C2^2.7(D5xDic3)480,604
C22.8(D5xDic3) = Dic5xC3:C8central extension (φ=1)480C2^2.8(D5xDic3)480,25
C22.9(D5xDic3) = C30.21C42central extension (φ=1)480C2^2.9(D5xDic3)480,28
C22.10(D5xDic3) = C60.93D4central extension (φ=1)240C2^2.10(D5xDic3)480,31
C22.11(D5xDic3) = C60.13Q8central extension (φ=1)480C2^2.11(D5xDic3)480,58
C22.12(D5xDic3) = C30.24C42central extension (φ=1)480C2^2.12(D5xDic3)480,70
C22.13(D5xDic3) = C2xD5xC3:C8central extension (φ=1)240C2^2.13(D5xDic3)480,357
C22.14(D5xDic3) = C2xC20.32D6central extension (φ=1)240C2^2.14(D5xDic3)480,369
C22.15(D5xDic3) = C2xDic3xDic5central extension (φ=1)480C2^2.15(D5xDic3)480,603
C22.16(D5xDic3) = C2xD10:Dic3central extension (φ=1)240C2^2.16(D5xDic3)480,611
C22.17(D5xDic3) = C2xC30.Q8central extension (φ=1)480C2^2.17(D5xDic3)480,617

׿
x
:
Z
F
o
wr
Q
<